If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1250000=-5p^2+15000p
We move all terms to the left:
1250000-(-5p^2+15000p)=0
We get rid of parentheses
5p^2-15000p+1250000=0
a = 5; b = -15000; c = +1250000;
Δ = b2-4ac
Δ = -150002-4·5·1250000
Δ = 200000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200000000}=\sqrt{100000000*2}=\sqrt{100000000}*\sqrt{2}=10000\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15000)-10000\sqrt{2}}{2*5}=\frac{15000-10000\sqrt{2}}{10} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15000)+10000\sqrt{2}}{2*5}=\frac{15000+10000\sqrt{2}}{10} $
| 12=73-x | | 5(t-2)=21 | | p^2+8p=16=0 | | -16^2+288t+7=0 | | 13f-32=33 | | 7.8x=24.4 | | (2/3)^x=16/81 | | -4(7m+8)=52 | | 7.8r=23.4 | | 5n+3=4n+3 | | 6z-(3z-1)=7z-1 | | 2x/3x=4/9 | | 8(x+5)+x=3(x+4)+4 | | 0=-5p^2+15000p | | 0=-5p+15000p | | x+7x=112 | | x+2x+1/2x=224 | | 7x-3+5x-3=90 | | -16^2+230t+8=0 | | 4x+11=x+13 | | 3×2×x=18 | | 5(w+3)=2w-9 | | -4(v+8)=-6v-34 | | 20=(-0.06k+10^(-0.01))^-100 | | x-12+14x=25+2x-1 | | 8=6+2a | | 11x+15=110 | | 45=6k+9 | | 11y+21=60 | | 21n+12^2=0 | | 31=5h-9 | | 2=11-3h |